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ABSTRACT  

Background: Preterm birth (PTB) has been associated with exposure to air pollution, but it is 

unclear if effects might vary among air pollution sources and components.  

Objectives: To study the relationships between PTB and exposure to different components of air 

pollution, including gases and particulate matter (PM) by size fraction, chemical composition 

and sources.  

Methods: Fine and ultrafine PM (respectively, PM2.5 and PM0.1) by source and composition were 

modeled across California over period 2000-2008. Measured PM2.5, nitrogen dioxide and ozone 

concentrations were spatially interpolated using empirical Bayesian kriging. Primary traffic 

emissions at fine-scale were modeled using CALINE4 and traffic indices. Data on maternal 

characteristics, pregnancies, and birth outcomes were obtained from birth certificates. 

Associations between PTB (n= 442,314) and air pollution exposures defined according to the 

maternal residence at birth were examined using a nested matched case-control approach. 

Analyses were adjusted for maternal age, race/ethnicity, education and neighborhood income.  

Results: Adjusted odds ratios for PTB in association with interquartile range (IQR) increases in 

average exposure during pregnancy were 1.133 (95% CI: 1.118, 1.148) for total PM2.5, 1.096 

(95% CI: 1.085, 1.108) for ozone, and 1.079 (95% CI: 1.065, 1.093) for nitrogen dioxide. For 

primary PM, the strongest associations per IQR by source were estimated for onroad gasoline (9-

11% increase), followed by onroad diesel (6-8%) and commercial meat cooking (4-7%). For 

PM2.5 composition, the strongest positive associations per IQR were estimated for nitrate, 

ammonium and secondary organic aerosols (11-14%), followed by elemental and organic carbon 



Environ Health Perspect DOI: 10.1289/ehp.1510133 
Advance Publication: Not Copyedited 
 

4 

 

(2-4%). Associations with local traffic emissions were positive only when analyses were 

restricted to births with residences geocoded at the tax parcel level. 

Conclusions: In our statewide nested case-control study population, exposures to both primary 

and secondary pollutants were associated with an increase in PTB.  
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INTRODUCTION 

Preterm birth (PTB) is defined as birth before 37 completed weeks of gestation (World Health 

Organization 2012). PTB is a major cause for infant death and morbidity, and has also been 

associated with adverse effects later in life including impaired vision, hearing and cognitive 

function, decreased motor function and behavioral disorders (Saigal and Doyle 2008). Air 

pollution has been hypothesized to increase the risk of PTB, notably by increasing systemic 

oxidative stress and inflammation (Vadillo-Ortega et al. 2014), impairing placentation (van den 

Hooven et al. 2009), causing endocrine disruption (e.g., disturbing the pituitary-adrenocortico-

placental system) and increasing maternal susceptibility to infections (Slama et al. 2008). A 

growing number of studies have reported positive associations between exposure of pregnant 

women to air pollution and PTB (Pereira et al. 2014; Kloog et al. 2012; Olsson et al. 2013; 

Wilhelm et al. 2011; Stieb et al. 2012), although results vary widely between studies: positive 

associations have been reported between particulate matter (PM) and PTB in some studies (e.g.: 

(Pereira et al. 2014; Kloog et al. 2012; Stieb et al. 2012; Wu et al. 2009b) while inverse 

associations have been reported in others (e.g. (Wilhelm et al. 2011; Trasande et al. 2013). 

Beyond the possible influences of methodological differences and of varying population 

susceptibilities between study settings, such discrepancies might also be due to differences in PM 

composition across settings. Potential effects of PM on PTB might be mediated by core chemical 

components of PM (e.g., elemental carbon, nitrates) or by organic compounds (e.g. quinones, 

polycyclic aromatic hydrocarbons (PAH)) or metals adsorbed onto the particle surface 

(Schlesinger et al. 2006). PM composition highly varies across seasons and settings (Bell et al. 

2007). To our knowledge, only two U.S. studies have examined the association between PM 
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composition and PTB. In Los Angeles County, organic carbon (OC), elemental carbon (EC) and 

ammonium nitrate in fine PM (PM2.5; less than 2.5 µm in aerodynamic diameter) were positively 

associated with PTB, despite an inverse association with total PM2.5 mass (Wilhelm et al. 2011). 

In Atlanta, sulfate and water-soluble metals in PM2.5 were positively associated with PTB despite 

a lack of association with total PM2.5 mass (Darrow et al. 2009).  

The composition of air pollution, and any related health risk that depends on composition, is 

influenced by the nature of contributing air pollution sources. Identifying the sources most likely 

to cause PTB is not only a question of scientific interest but also of policy relevance. A large 

number of studies have examined the relationships between PTB and traffic-related pollutants or 

proximity to traffic sources. They generally reported positive associations (Wu et al. 2009b; 

Miranda et al. 2013; Yorifuji et al. 2011; Genereux et al. 2008), with some exceptions (Brauer et 

al. 2008; Malmqvist et al. 2011). Only a few studies examined PTB in relation to geographical 

proximity to other sources (oil refineries (Yang et al. 2004), cement plants (Yang et al. 2003) or 

gasoline stations (Huppe et al. 2013)) or to exposure to PM from specific sources (e.g., open-

hearth steel mill (Parker et al. 2008), coal (Mohorovic 2004), diesel (Wilhelm et al. 2011) or 

biomass burning (Wilhelm et al. 2011; Wylie et al. 2014)). Only one study examined the 

association between PTB and PM from several sources within an integrated framework (Wilhelm 

et al. 2011), which is needed to allow for a rigorous comparison of source influence on PTB and 

identification of the most harmful sources. 

Finally, to the best of our knowledge, the relationship between PTB and ultrafine PM (PM0.1; 

less than 0.1 µm in aerodynamic diameter) has never been studied. Important concerns exist 

regarding the toxicity of particles in the PM0.1 size fraction due to their larger number 
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concentrations and surface-to-volume ratios relative to fine or coarse PM (Knol et al. 2009), 

yielding a higher total surface area available for adsorption of toxic chemicals such as metals or 

PAH. Ultrafine PM also have higher potential than fine or coarse PM for translocation into 

organs other than the lung and even into cells (Schlesinger et al. 2006).  

This work aimed to study the relationships between air pollution and preterm births that occurred 

during 2001–2008 throughout the state of California. It extends previous research on this topic, 

by using spatiotemporal chemical transport modeling of particles by source and composition and 

by studying PM0.1 exposure. It also makes use of more commonly used air pollution metrics such 

as interpolated measurement data, predictions from a line source dispersion model, traffic density 

and proximity to roads. It allows for the comparison of the estimated effects of different 

components and sources of air pollution within a consistent framework, in an attempt to identify 

those most strongly associated with PTB. 

METHODS 

Air pollution metrics 

Empirical Bayesian kriging of monitoring station measurements 

Measurements from monitoring stations throughout the state for years 2000-2008 were obtained 

from the California Air Resources Board (http://www.arb.ca.gov/) for total PM2.5, nitrogen 

dioxide (NO2) and ozone (O3). Only results from filter-based measurements, generally conducted 

every 3 or 6 day, were included for PM2.5. Hourly gaseous pollutant measurements were 

converted to daily means using a criterion of 75% data completeness at a 24-hour basis. Only 

data for the 10 AM – 6 PM time windows were used to calculate daily means for O3. Monthly 
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averages for pollutants were then calculated for stations with more than 75% days of valid data 

in a month. These monthly averaged concentrations were spatially interpolated between stations 

using an empirical Bayesian kriging (EBK) model (Pilz and Spöck 2007) implemented in 

ArcGIS 10.1 (ESRI, Redlands, CA). Due to a high computational cost, we applied this approach 

to monthly averaged concentrations only. The number of available monitors per month varied 

during the study period (ranges: 75-98 for PM2.5, 151-182 for O3 and 94-109 for NO2). Pollutant 

surface predictions were generated for 200 m*200 m grids (Wu et al. 2016). Leave-one-out cross 

validation was conducted for model evaluation. A single sample of monthly averaged 

measurement data (at one station) was selected as the test sample while other samples (at the 

other stations) were used to train the EBK models. This process was repeated so that every 

monthly sample was estimated independently as the validation data.  The resulting R2 and root 

mean square error (RMSE) estimated were R²=0.65 and RMSE= 3.65 µg/m3 for PM2.5; R²=0.74 

and RMSE= 6.08 ppb for NO2; R²=0.72; and RMSE= 5.81 ppb for O3 (Wu et al. 2016). 

Chemical transport modeling 

The daily mass concentration of primary PM (PM emitted directly into the atmosphere) and of 

secondary PM (formed in the atmosphere from gas-phase precursors) was estimated at 4km 

spatial resolution across two domains covering 92% of the California population for the period of 

2000-2008, using the University of California-Davis/California Institute of Technology 

(UCD/CIT) chemical transport model (Hu et al. 2015). The UCD/CIT model includes a complete 

description of atmospheric transport, deposition, chemical reaction, and gas-particle transfer (Hu 

et al. 2015). This model provided mass concentration estimates for primary PM total mass and 
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for several chemical species in PM (OC, EC, nitrates, sulfates, ammonium and secondary 

organic aerosols (SOA)).  

In addition, the University of California Davis/CIT_Primary (UCD_P) chemical transport model 

was used across the same geographical domain for the period of 2000-2006 to predict the daily 

mass concentrations for further chemical species and for the total mass of primary PM broken 

down by source (Hu et al. 2014a; Hu et al. 2014b). The model simulated daily primary PM mass 

concentrations, also at a 4 km × 4 km grid resolution, from ~900 sources. Composition profiles 

were applied combined with the primary PM mass concentration predictions from the UCD_P 

model to estimate the concentrations of chemical species in primary PM. The mass, source, and 

composition of size-resolved PM were simulated by model calculations. We decided a priori to 

include in our analyses UCD_P estimates of sources and components of primary PM for which 

previously published detailed validation results were available. Sets of validation results spanned 

multiple years between 2000 – 2007 (Hu et al. 2014a; Hu et al. 2014b). Previous analyses were 

conducted to directly evaluate the accuracy of simulated source contributions using the UCD 

models. These tests included comparison to receptor-oriented source apportionment studies at 

multiple locations throughout California (Hu et al. 2014b). Onroad gasoline, diesel, commercial 

meat cooking and wood burning passed two complex source constraint checks based on (1) 

comparison to tracer based source apportionment studies and (2) model performance for 

individual species defined by 4 criteria (see “Description of the source constraint checks 

performed to directly evaluate the accuracy of simulated source contributions using the UCD_P 

model” in Supplemental Material). Further analysis compared predicted components of PM mass 

including elemental carbon and various trace metals to measurements at several locations 
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throughout California. We decided a priori to select for the present epidemiological analyses 

only primary PM components for which correlations between monthly averaged predictions and 

measured values were >0.8 in the PM2.5 size fraction (since this fraction has the greatest number 

of available measurements). Nine species of PM (potassium, chromium, iron, titanium, 

magnesium, strontium, arsenic, calcium and zinc) matched this criterion (Hu et al. 2014a).  

CALINE4 Dispersion Modeling for road sources 

A modified version of CAlifornia LINE Source Dispersion Model Version 4 (CALINE4) 

(Benson 1989; Wu et al. 2009a) was used to predict ambient concentrations from local traffic 

emissions of CO, NOx, and ultrafine particle number (UFP) up to 3 km from maternal residences. 

Model inputs included roadway geometry and traffic counts, emission factors, and 

meteorological parameters (wind direction, wind speed, temperature stability class, and mixing 

heights). CALINE4 predictions were not conducted for 5% of births, for which no traffic count 

data were recorded within 3 km of the maternal residences. CALINE4 predictions in this study 

did not incorporate background levels of pollutants, thus solely represents the contribution from 

local traffic emissions (Wu et al. 2016). We compared the CALINE4-modeled daily UFP 

number concentrations with particle number concentrations measured using the Condensation 

Particle Counter (model 3785; TSI, Inc., Shoreview, MN) at four monitoring sites located in 

southern California from a separate study (Delfino et al. 2010).  The measurements contained 86-

92 days of data at each site, with a total of 357 days of measurements from all the sites. The 

overall correlation between the modeled and the measured concentrations of particle numbers. 

was 0.75. More details about the model evaluation can be found elsewhere (Wu et al. 2016). 
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Traffic and roadways 

Traffic densities within circular buffers of different sizes centered on maternal homes were 

calculated based on 2002 annual average daily traffic counts (AADT) data from the California 

Department of Transportation (CALTRANS 2012). To estimate traffic density, AADT on each 

road segment was weighted by the length of this same road segment within the buffer. These 

traffic densities for year 2002 were then scaled to other years based on temporal trends in total 

vehicle miles traveled (from 2000 to 2008) in California (CALTRANS 2013).  

U.S. major roads data based on TeleAtlas streets (ESRI 2010) were used to calculate the distance 

from each maternal home to the nearest major road (defined by categories of Functional Road 

Classes (FRC) A0-A5).  

Study population 

Birth certificate records for all births occurring from January 1, 2001 to December 31, 2008 in 

California (n=4,385,997) were obtained from the California Department of Public Health. 

Maternal addresses of residence recorded on birth certificates were geocoded using the 

University of Southern California GIS Research Laboratory geocoding engine (Goldberg et al. 

2008), which geocoded maternal residences at the centroid of tax parcels whenever feasible. In 

total, we had 54.02% of addresses geocoded within a parcel. Further, we had 37.23% of all births 

that were geocoded within 50 m of a parcel.  In addition, 8.55% of addresses were in California 

but not within or close to a parcel and they were geocoded to the centroid of the zip code or city 

whenever feasible. In total, 1361 births had no usable coordinates at all and 7512 infants were 

born to women residing outside of California. After excluding these births and those who had 
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State File Number information missing (n=8119, partially overlapping with births that lacked 

usable coordinates or occurred outside of California), we obtained birth certificate data for 

4,370,371 pregnancies.  

Infants with recorded birth defects or unknown birth defects status (n=18,811 and n= 675, 

respectively) were excluded. The time of conception and resulting gestational age (in days) were 

estimated based on the first day of the last menstrual period reported by mothers. We excluded 

birth with missing information for gestational age (n= 196,247), estimated gestational age shorter 

than 121 or longer than 319 days (n=2,051 and n=41,017, respectively), implausible 

combinations of birth weight and gestational age (n=17,026) (Alexander et al. 1996), or infants 

born to mothers older than 60 (n=43). Infants conceived more than 19 weeks before the start 

(January 1, 2001), or less than 43 weeks before the end (December 31, 2008) of the study 

(n=389,611 and n=38,598, respectively) were further excluded to avoid fixed cohort bias (Strand 

et al. 2011). Several exclusion criteria overlapped for certain births, leaving 3,870,696 births 

from the source population eligible for the study. All PTB cases (infants born before 37 

gestational weeks) from the source population that met the eligibility criteria (n=442,314)	were 

included in the present study. For each PTB case, two controls (infants born at 37 or more 

gestational weeks) matched on the calendar year of conception (determined from the estimated 

date of conception, as explained above) were randomly selected from the source population 

without replacement. The same approach was employed for sensitivity analyses of moderately 

preterm births (MPTB cases, born before 35 weeks, n=158,645 and controls born at 35 or more 

weeks) and very preterm births (VPTB cases, born before 30 weeks, n=29,510 and controls born 

at 30 or more weeks). 
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Statistical analyses 

A nested matched case-control approach was employed to analyze the association between each 

air pollutant and PTB (or MPTB or VPTB) (Huynh et al. 2006; Wilhelm et al. 2011). This 

approach was used instead of	a full cohort analysis because of the computational difficulties in 

fitting models with about 4,000,000 observations. Because controls were randomly selected from 

a source cohort population basis, this design is free from selection biases often encountered in 

classical case control studies and produces comparable results to those of a cohort analysis with 

little loss in efficiency (Kass and Gold 2007). Since by definition cases are born preterm and 

controls experience a longer gestation time, cases and controls were exposed to air pollution 

during different periods of gestation. To allow for a valid comparison of exposures between 

cases and controls, for each control we truncated exposure estimates at the gestational age 

reached by the PTB (or MPTB or VPTB) case to which it had been matched. To account for this 

risk set design, conditional logistic regression was employed for the analysis of the association 

between air pollution and preterm birth, using the ‘survival’ package of the R environment, 

version 3.0.1. (R Core Team, 2013). Robust standard errors were estimated (Lee et al. 2013).  

Inferences were based on statistical significance at the 5% level. 

For pollutant measurements interpolated by EBK (total PM2.5, O3 and NO2), for UCD_P, 

UCD/CIT and CALINE4 predictions, we conducted analyses for “average pregnancy exposures” 

(which for controls was actually truncated at the gestational age in days reached by cases to 

which they were matched).We conducted analyses according to exposure categories for pollutant 

concentrations, defined as quartiles of the exposure metric distribution in the case-control set. 

We also introduced air pollution metrics as linear terms in the models and then report ORs for 
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PTB for an inter-quartile range (IQR) in air pollution metrics. IQRs were derived separately for 

each model, so that IQRs for the same pollutant may vary between the main analysis and 

sensitivity analyses. To allow for the comparison of associations between PTB and traffic density 

across buffers of different sizes, we scaled risk estimates to an increase of 10,000 vehicles per 

day per meter for this exposure metric. Distance to roadway was analyzed using dichotomous 

indicators for living or not living within certain distances from roads. 

Risk factors for PTB other than air pollution were identified from the literature and a causal 

diagram was drawn (see Figure S1) to identify the minimal set of potential confounders to adjust 

for (Greenland et al. 1999). In our primary analyses we adjusted for educational level (in 

categories defined as follows: lower than 8th grade, 9th grade to high school, and college 

education), maternal race/ethnicity (in mutually exclusive categories as follows: African 

American, Asian, Hispanic regardless of race, White non-Hispanic, and others including 

Hawaiian/Pacific Islanders, American Indian/Alaskan native and mothers with multiple 

race/ethnicities specified), and maternal age and median household income by Census Block 

Group (U.S. Census Bureau 2004), using quadratic polynomial functions. However, we 

acknowledge uncertainties in our causal diagram; incorrect assessment of the causal relationships 

could affect selection of the minimal set of potential confounders for adjustment. We therefore 

examined the effects of further adjustment for body mass index (BMI) at the beginning of 

pregnancy or for smoking during pregnancy in addition to the covariates included in the primary 

model, in the subset of infants born in 2007 and 2008, since these variables were not recorded on 

birth certificates in the previous years.  
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The use of bi-pollutant models was explored for measured ambient concentrations interpolated 

with EBK. Last, for traffic indicators at fine geographic scale (CALINE4 estimates traffic 

density, distance to roads), we explored the influence of geocoding accuracy by a separate 

analysis of the subgroup of births geocoded at the tax parcel level (the highest quality 

geocoding).   

Because of the low percentages of missing data and long computation times, we conducted 

complete case analyses only. If data were missing for one case, the entire risk set it belonged to 

(i.e.: the case and its two matched controls) was excluded from the analyses, whereas if data 

were missing for one control but not for the other subjects of the risk set (i.e. the matched case 

and other control of the risk set), these other subjects contributed to the likelihood calculation. 

The numbers of cases and controls included in analyses of the associations between PTB and air 

pollution metrics (and to some extent, the ratio of these numbers which depended on the 

proportion of missing data, as explained above) varied by the type of air pollution metrics 

because these metrics covered slightly different populations. Traffic density and distances to the 

nearest roadways were available for the entire state, whereas some very limited portions of the 

state could not be covered by the surfaces predicted by the EBK (more than 98% of births were 

covered). CALINE4 exposures were calculated only for mothers who resided within 3 km from 

roadways with traffic count data (95% of all births). UCD_CIT exposures were available for the 

most populous area of the state where 92% of the population lived, while UCD_P exposures 

were available for the same domain, but for years 2000–2006 only.  

The study has been approved by the Institutional Review Board of the University of California, 

Irvine. Informed consent from study participants was not required because the nature of the study 
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was analysis of existing data, which posed minimal risk to the subjects.  In addition, it was not 

practically feasible to contact all the subjects. 

RESULTS 

Among the eligible births, 11.43% of infants were born preterm. The distribution of cases and 

their matched controls by maternal characteristics, diseases and neighborhood income level is 

shown in Table 1. Descriptive statistics for air pollution metrics and their correlations are 

presented in Table S1.  

ORs for PTB in association with IQR increases in average exposure during pregnancy were 

positive and statistically significant: 1.133 (95% CI: 1.118, 1.148) for a 6.45 µg/m3 increase in 

total PM2.5, 1.096 (95% CI: 1.085, 1.108) for a 11.53 ppb increase in O3, and 1.079 (95% CI: 

1.065, 1.093) for a 9.99 ppb increase in NO2, after adjustment for confounders (Table 2).. In 

bipollutant models, the positive association between PTB and PM2.5 was robust to adjustment for 

either NO2 or O3. However, the association with NO2 was no longer positive when adjusted for 

total PM2.5. When NO2 and O3 were both introduced into a same model, associations with PTB 

remained positive and significant for these two pollutants (Table 2).  

Associations between PTB and primary PM2.5 or PM0.1 modelled at a 4 km*4 km resolution were 

also positive and statistically significant (Table 3). For sources of primary PM0.1 modelled at a 4 

km*4 km resolution using the UCD_P model (for years 2000-2006 only), the strongest 

associations per IQR in exposure were observed for on-road gasoline, followed by on-road diesel 

and commercial meat cooking. An inverse association was observed for wood burning. Patterns 

by source were similar for primary PM2.5, but overall, associations per IQR in exposure appear 
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slightly weaker than those for PM0.1. However, when all sources of primary PM (including 

onroad gasoline, diesel, commercial meat cooking and wood burning but also other, less well 

characterized sources) modelled using the UCD_CIT model for years 2000-2008 were grouped 

together, associations per IQR in exposure were higher for primary PM2.5 than for primary PM0.1, 

(Table 3). 

For PM2.5 composition modelled at a 4 km*4 km resolution using the UCD_CIT model (for years 

2000-2008), the strongest positive associations with PTB per IQR in exposure were observed for 

nitrate, ammonium and SOA, followed by EC, OC and sulfate (Table 3).  For PM2.5 composition 

modelled at a 4 km*4 km resolution using the UCD_P model (for years 2000-2006 only), a 

positive association was observed between PTB and potassium, whereas inverse associations 

were observed with iron, strontium, calcium and zinc exposure (Table 3). No significant 

association was observed for the other chemical species investigated.  

Analyses by quartile of exposure showed monotonic increases in PTB with increasing exposure 

to total PM2.5, ozone, and NO2 estimated using EBK; and primary PM2.5 and PM2.5 species 

estimated using UCD_IT; but not PM2.5 species estimated using UCD_P. ORs showed monotonic 

increases across quartiles of primary PM0.1 and PM0.1 species estimated using UCD_CIT; and for 

UCD_P estimates of primary PM (either PM2.5 or PM0.1) from on-road gasoline, on-road diesel, 

and meat cooking. Nevertheless, ORs for primary PM (either PM2.5 or PM0.1) from wood burning 

decreased as exposures increased (Figure S2). 
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For indicators of traffic-related pollution at fine geographical resolution (CALINE4 predictions, 

traffic density and distance to roads), associations with PTB were sensitive to the accuracy of 

geocoding. In the entire population, these indicators were generally inversely  associated with 

PTB (Table 4). However when analyses were restricted to the births geocoded at the tax parcel 

level, CALINE4 predictions for UFP, CO and NOx were all positively associated with PTB (see 

Table 4). Positive associations with traffic density and distance to roads (only within 150 m for 

distance to roads) were also observed only when restricting to parcel geocoded births (Table 4). 

Sensitivity analyses showed that further adjustment for preterm birth risk factors other than 

maternal age, race/ethnicity, education and neighborhood median income changed risk estimates 

by 10% or less, except for BMI. The results of sensitivity analyses (years 2007-2008) with 

adjustment for BMI or smoking, in addition to the covariates included in the primary models  are 

show in Table S2.  

Overall, similar results were observed for MPTB and VPTB as those for PTB, except positive 

associations were observed between MPTB and iron, titanium, magnesium and strontium and 

between VPTB and titanium and magnesium (see Table S3). However, no significant association 

was observed between VPTB and UCD_P predictions of PM by sources. 

DISCUSSION 

A major asset of this large study is the wealth of air pollution metrics. California has the densest 

ambient PM measurement network of any state in the United States, and detailed emissions 

inventories (Hu et al. 2015). Rich environmental datasets (e.g.: PM species measurements	and 
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receptor-oriented source apportionment studies at multiple sites)	 were available to support 

exposure model application and evaluation. 

The respective strengths and limitations of the various air pollution metrics used in this study, 

notably for their use in epidemiological studies of pregnancy outcomes, were discussed 

extensively in other papers (Hu et al. 2015; Hu et al. 2014a; Hu et al. 2014b; Benson 1989; Wu 

et al. 2009a; Laurent et al. 2014; Laurent et al. 2013) and in a report (Wu et al. 2016). Briefly 

stated, the interpolation of ambient measurements for PM2.5, NO2 and O3 using EBK avoids 

biases from assigning data from one single monitor to populations living farther away (Laurent et 

al. 2014). It captures general temporal and spatial trends in ambient concentrations of three 

pollutants (total PM2.5, NO2 and O3), but not the small-scale spatial variations (e.g.: within a few 

hundred meters) since only 75-182 monitoring sites were located over the entire state of 

California depending on the pollutant and time period, and since EBK does not incorporate 

spatial covariates for prediction (in contrast with land use regression). However, leave-one-out 

cross validation results for EBK were satisfactory for monthly concentrations, with correlation 

coefficients of 0.74, 0.72 and 0.65 for O3, NO2 and total PM2.5 respectively (Wu et al. 2016). 

The chemical transport models capture spatial variability in ambient concentrations better, but 

are less capable at capturing temporal variability. However, they cover pollutants for which 

measurement data are very scarce such as ultrafine PM (Hu et al. 2014b), chemical species in  

PM (Hu et al. 2015; Hu et al. 2014a), and source-specific primary PM (Hu et al. 2014b). 

Validation studies have been conducted for UCD_P (Hu et al. 2014a; Hu et al. 2014b) and 

UCD_CIT (Hu et al. 2015) to identify those particles size fractions, chemical components, and 

sources that are suitable for inclusion in epidemiologic studies. Only four major sources of 
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primary PM that passed the direct validation checks (agreement between modeled concentrations 

and the results of source apportionment studies across several locations and in different episodes 

in California, as explained above and in “Description of the source constraint checks performed 

to directly evaluate the accuracy of simulated source contributions using the UCD_P model” 

Supplemental Material) were included in the present study. They represent some of the most 

ubiquitous sources in the environment of urban and/or rural populations (Hu et al. 2014b). 

Similarly, we included in the analyses only primary PM components for which correlations 

between monthly averaged predictions and measured values were >0.8. Total PM0.1 mass was 

also included in the analysis because prediction agreed well with measurements (R = 0.81)(Hu et 

al. 2014a). For secondary species, we included pollutants with model performance in reasonably 

good agreement with measurements (for concentrations averaged on several months: organic 

carbon, nitrate, and ammonium), according to standard criteria for acceptable model performance 

as discussed by Boylan and Russell (2006): mean fractional error less than or equal to +50% and 

mean fractional bias within ±30% (Hu et al. 2015). Sulfates were also included because they are 

a non-negligible contributor to total PM mass (Bell et al. 2007) even though the predicted sulfate 

concentrations are not satisfactory (Boylan and Russell, 2006) due to missing emission sources 

(Hu et al. 2015). Predictions for secondary organic aerosols (SOA) concentrations could not be 

validated because it is difficult to differentiate the SOA fraction from total organic aerosol in the 

measurements. Caution must therefore be taken when interpreting results for sulfate and SOA in 

our study. 	

Since both EBK and chemical transport models had limited geographical resolution and traffic 

emissions may be highly heterogeneous at finer geographic scales, CALINE4 predictions were 
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used in order to capture such small-scale variations in primary traffic emissions (Benson 1989; 

Wu et al. 2009a; Laurent et al. 2013). CALINE4 estimates have limited temporal variability 

since CALINE4 is a simple Gaussian dispersion model that does not consider complex 

atmospheric mechanisms of transport, deposition, chemical reaction, and gas-particle 

transformation. In addition, model inputs have limited temporal resolution (e.g. annual average 

traffic counts, estimated mixing height by season and time of day). However, the model 

performance was reasonably well with an overall correlation of 0.75 between modeled and 

measured daily average particle number concentrations at three monitoring sites in Los Angeles 

County and one site in Riverside County, California (Wu et al. 2016).  

Traffic density and distance to roads are cruder proxies of traffic-related pollution than 

CALINE4 predictions, but were used to check for consistency of our results with numerous 

studies which used similar indicators.  

As a general limitation, the personal exposure of mothers during pregnancy could not be 

estimated in this study since we did not have time-activity information for the population (Wu et 

al. 2011). Our air pollution metrics solely relied on maternal home address at the time of delivery 

since previous residences during pregnancy were unavailable in birth certificates.  

The statistical models used for the main analyses were adjusted for a set of potential confounders 

selected using a causal diagram: maternal age, race/ethnicity, education and neighborhood 

median income. All of them are strong and well documented risk factors for PTB and air 

pollution exposures, and they are reported with relatively high accuracy on birth certificates 

(Northam and Knnapp, 2006). Additional adjustment for further risk factors had very limited 
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impact on the results, therefore results of such analyses are provided only for smoking or BMI 

(see Table S2).  It is possible that the negligible impact of adjusting for smoking or for some 

chronic diseases is partly due to underreporting of these factors in birth certificates, leading to a 

very low proportion of women with such factors effectively documented in our population (0.4% 

for chronic hypertension, 2.9% for total diabetes, 2.5% for smoking in 2007-2008 data). 

However, our sensitivity analyses suggest that if further adjusting for smoking has any effect, it 

is toward increasing the risk estimates of the associations between air pollution and PTB (except 

for ozone). On the contrary, further adjusting for body mass index slightly reduced the 

associations between most air pollutants and PTB, but did not change the conclusions of the 

analyses (see Table S2).  

We found a positive association between PTB and total measured PM2.5. This is consistent with 

some (Pereira et al. 2014; Kloog et al. 2012; Stieb et al. 2012; Dadvand et al. 2014) but not all 

(Wilhelm et al. 2011; Trasande et al. 2013) previous studies. Again, since the composition of 

PM2.5 substantially varies in time and space, contrasted findings from one setting to another is 

expected. Our PM2.5 finding is consistent with a previous California study conducted during an 

earlier period (1999 - 2000) (Huynh et al. 2006).  

Only previous studies of smaller sizes (i.e.: including 50,000 PTB cases or less) examined the 

associations between PTB and PM by source (Brauer et al. 2008; Genereux et al. 2008;  Huppe 

et al. 2013; Malmqvist et al. 2011; Miranda et al. 2013; Mohorovic 2004; Parker et al. 2008; 

Wilhelm et al. 2011; Wu et al. 2009b; Wylie et al. 2014; Yorifuji et al. 2011; Yang et al. 2003; 

Yang et al. 2004) or composition (Darrow et al. 2009; Wilhelm et al. 2011). We found primary 

PM from several sources to be positively associated with PTB. Consistent findings have been 
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reported previously from other studies for diesel sources and meat cooking (Wilhelm et al. 

2011).  

To the best of our knowledge, this is the first study of ultrafine particles and PTB. Positive 

associations were observed with both the mass (UCD_P) and number (CALINE4, in births 

geocoded to tax parcels) of primary ultrafine particles (from local traffic emissions, for the 

latter). In our study associations between PTB and an IQR increase in PM from each source were 

slightly stronger for PM0.1 than for PM2.5, as expected because of the higher total surface area 

available for adsorption of toxic chemicals and higher potential for translocation of PM0.1, as 

compared to PM2.5 (Knol et al. 2009). However, an opposite pattern (stronger association with an 

IQR increase in PM2.5 compared with PM0.1) was observed for the total mass of primary PM, 

which was unexpected for the reasons mentioned above. The observed inverse associations 

between PTB and PM0.1, or PM2.5 from wood burning were also unexpected. 

Our finding of an association with EC and OC in PM is consistent with a previous study based 

on speciation monitor measurements in Los Angeles (Wilhelm et al. 2011). The positive 

associations observed with NO2 (EBK) and NOx (CALINE4, in births geocoded to tax parcels) 

are also echoed by other studies (Wilhelm et al. 2011; Dadvand et al. 2014). The associations we 

observed for potassium (positive), strontium, zinc, iron and calcium (all inverse) are 

unprecedented but no clear dose-response gradients were observed for these species, except for 

calcium (see Figure S2). 

Regarding secondary pollutants, we found an increased risk of PTB with exposure to ozone 

(consistent with some (Olsson et al. 2013; Lin et al. 2015) but not all (Stieb et al. 2012) previous 
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studies) and other secondary pollutants such as nitrate, ammonium , SOA and sulfate. A recent 

study in Los Angeles County reported a positive association between PTB and measured 

ammonium nitrate in PM2.5 (Wilhelm et al. 2011). This is clearly consistent with our results. 

However, another study in Atlanta using a time series methodology reported no association 

between PTB and nitrate or ammonium (Darrow et al. 2009). Darrow et al. also reported a 

positive association with sulfate (Darrow et al. 2009), a pollutant which has higher 

concentrations in the Eastern than in Western US (Bell et al. 2007) and for which the modelling 

performance was suboptimal in our study setting (Hu et al. 2015). We estimated a novel positive 

association between PTB and SOA, but this finding should be interpreted with caution given that 

SOA predictions have not been validated against measured values. 

Interestingly, our findings for the associations between PTB and local traffic-related pollution 

characterized at a fine geographical resolution using predictions from the CALINE4 model, 

traffic density or distance to roads are highly sensitive to the accuracy of geocoding. If an 

increase in PTB risk really occurs only within a short distance from roads (e.g., less than 200 m) 

as our results suggest, then imprecise geocoding could easily introduce substantial exposure 

measurement error, obscuring any epidemiological associations with local traffic emissions. This 

might help explain some inconsistent findings from the literature, although most studies have 

reported positive associations between PTB and traffic exposure (Wu et al. 2009b; Miranda et al. 

2013; Yorifuji et al. 2011; Genereux et al. 2008). Future studies may benefit from restriction to 

participants with the highest quality geocode, at least as part of sensitivity analyses.  
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CONCLUSIONS 

In this large study, both primary and secondary pollutants are associated with increased PTB 

risk. Consistent results obtained using complementary exposure matrices supports previous 

evidence that primary traffic-related pollutants might increase PTB risk. Among the sources of 

primary PM0.1 and PM2.5 we evaluated, traffic (as represented by on-road gasoline and diesel) is 

the most strongly associated with PTB per IQR in exposure. Positive associations between PTB 

and PM2.5 components were the strongest for IQR increases in nitrate, ammonium and secondary 

organic aerosols, followed by elemental carbon and organic carbon. 
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Table 1. Description of the case/control set population characteristics 

Population characteristic  Cases  %  Controls % 
Maternal race/ethnicity      
   African American 33,343  7.54  44,155 4.99 
   Asian 48,240 10.91  103,275 11.67 
   Hispanic 226,903 51.30  450,975 50.98 
   White non-Hispanic 116,774 26.40  255,787 28.91 
   Multiple/other 10,892 2.46  19,928 2.25 
   Missing 6,162 1.39  10,508 1.19 
Maternal education      
   Lower than 8th grade 47,393 10.71  90,203 10.20 
   9th grade to High School 202,323 45.74  385,263 43.55 
   College (<4 years) 87,234 19.72  176,389 19.94 
   College (≥4 years) 92,910 21.01  210,484 23.79 
   Missing 12,454 2.82  22,289 2.52 
Median annual income by census block group 
   <= $30,933 118,984 26.90  214,115 24.20 
   $30,938 - $42,483 110,264 24.93  219,887 24.86 
   $42,500 - $60,179 107,245 24.25  222,392 25.14 
   >= $60,185 104,519 23.63  225,443 25.48 
   Missing 1,302 0.29  2,791 0.32 
Maternal age      
   <15 833 0.19  1,032 0.12 
   15 to 19 44,243 10.00  79,909 9.03 
   20 to 24 94,410 21.34  201,263 22.75 
   25 to 29 105,623 23.88  234,977 26.56 
   30 to 34 105,881 23.94  218,580 24.71 
   35 to 39 69,112 15.63  119,637 13.52 
   40 to 44 19,710 4.46  27,485 3.11 
   45 to 49 2,186 0.49  1,599 0.18 
   50 and over 316 0.07  146 0.02 
Chronic hypertension      
   No 438,640 99.17  881,861 99.69 
   Yes 3634 0.82  2,734 0.31 
   Missing 40 0.01  33 0.00 
Diabetes      
   No 424,110 95.88  859,704 97.18 
   Yes 18,164 4.11  24,891 2.81 
   Missing 40 0.01  33 0.00 
Preeclampsia       
   No 416,476 94.16  870,528 98.41 
   Yes 25,827 5.84  14,088 1.59 
   Missing 11 0.00  12 0.00 
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Population characteristic  Cases  %  Controls % 
Primary care       
   First trimester 370,973 83.87  758,341 85.72 
   After first trimester 62,786 14.19  117,887 13.33 
   None 4,405 1.00  2,842 0.32 
   Missing 4,150 0.94  5,558 0.63 
Parity       
   Primiparous 156,629 35.41  34,9295 39.48 
   Multiparous 285,410 64.53  53,5036 60.48 
   Missing 275 0.06  297 0.03 
Smoking during pregnancy (2007-2008 data only) 
   No 110,215 96.78  23,3461 97.64 
   Yes 3,670 3.22  5,651 2.36 
Pre-pregnancy body mass index (2007-2008 data only) 
   ≤19.9  12,360 10.85  26,029 10.89 
   20-24.9  40,812 35.84  91,317 38.19 
   25-29.9  25,621 22.50  55,684 23.29 
   30-34.9  12,758 11.20  25,667 10.73 
   >35  8,477 7.44  15,881 6.64 
  Missing 13,857 12.17  24,534 10.26 
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Table 2. Associations between preterm births and measured air pollutant concentrations 
interpolated by empirical Bayesian kriging in California. 

Air pollution 
indicatora 

Number of 
cases 

Number of 
controls  IQRb Adjusted odds ratio (95% 

confidence interval)c p value 

Single pollutant models (years 2000-2008) 
Total PM2.5 422,431 808,038 6.45 1.133 (1.118, 1.148) < 0.01 
O3 424,203 815,150 11.53 1.096 (1.085, 1.108) < 0.01 
NO2 421,936 806,224 9.99 1.079 (1.065, 1.093) < 0.01 

      Bi-polluant model including both total PM2.5 and O3 (years 2000-2008) 
Total PM2.5 421,068 802,401 6.45 1.120 (1.106, 1.134) < 0.01 
O3   11.53 1.100 (1.088, 1.112) < 0.01 

      
Bi-polluant model including both total PM2.5 and NO2 (years 2000-2008) 
Total PM2.5 418,654 792,894 6.45 1.139 (1.123, 1.155) < 0.01 
NO2   9.99 0.986 (0.971, 1.001) 0.07 

      
Bi-polluant model including both O3 and NO2 (years 2000-2008) 
O3 421,597 804,812 11.53 1.096 (1.083, 1.108) < 0.01 
NO2   9.99 1.083 (1.069, 1.098) < 0.01 

      
aPM2.5; particulate matter less than 2.5 µm in aerodynamic diameter; NO2; nitrogen dioxide; O3; ozone  
bInter-quartile range in exposure. Units are micrograms per cubic meter for total PM2.5, part per billion for 
gaseous pollutants. 
cOdds ratios were estimated using conditional logistic regression models, adjusted for race/ethnicity and 
educational level using categorical variables and for maternal age and median household income at 
Census block group level using polynomial functions. Odds ratios are expressed per interquartile range in 
exposure.  
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Table 3. Associations between preterm births and particulate matter concentrations 
modelled at the 4 km*4 km resolution by species and sources using chemical transport 
models in California. 

Air pollution indicatora Number of 
cases Number of controls  IQRb Adjusted odds ratio (95% 

confidence interval)c p value 

UCD_CIT modeled concentrations at the 4 km*4 km resolution, by fraction and species (years 2000-2008) 
Primary PM0.1 395,654 710,316 1.389 1.021 (1.015, 1.028) < 0.01 
OC in PM0.1 395,654 710,316 0.985 1.018 (1.012, 1.024) < 0.01 
EC in PM0.1 395,654 710,316 0.131 1.044 (1.036, 1.052) < 0.01 
SOA in PM0.1 395,654 710,316 0.061 1.130 (1.117, 1.143) < 0.01 
Primary PM2.5 395,654 710,316 8.229 1.036 (1.029, 1.043) < 0.01 
OC in PM2.5 395,655 710,316 3.699 1.020 (1.013, 1.027) < 0.01 
EC in PM2.5 395,654 710,316 1.258 1.040 (1.033, 1.048) < 0.01 
SOA in PM2.5 395,654 710,316 0.239 1.115 (1.102, 1.128) < 0.01 
Ammonium in PM2.5 395,654 710,316 1.188 1.138 (1.126, 1.150) < 0.01 
Nitrates in PM2.5 395,654 710,316 2.914 1.138 (1.128, 1.149) < 0.01 
Sulfates in PM2.5 395,654 710,316 0.535 1.004 (1.000, 1.008) 0.05 
UCD_P modeled concentrations at the 4 km*4 km resolution, by species, in PM2.5 (years 2000-2006) 
Potassium  294,860 522,199 0.053 1.013 (1.003, 1.023) < 0.01 
Chromium 294,860 522,199 0.002 0.999 (0.996, 1.001) 0.31 
Iron 294,860 522,199 0.190 0.980 (0.967, 0.994) < 0.01 
Titanium 294,860 522,199 0.008 0.992 (0.984, 1.001) 0.09 
Magnesium 294,860 522,199 0.004 0.998 (0.990, 1.005) 0.55 
Strontium 294,860 522,199 0.001 0.979 (0.969, 0.989) < 0.01 
Arsenic 294,860 522,199 0.001 0.999 (0.997, 1.000) 0.06 
Calcium 294,860 522,199 0.048 0.965 (0.955, 0.975) < 0.01 
Zinc 294,860 522,199 0.002 0.982 (0.976, 0.988) < 0.01 
UCD_P modeled concentrations at the 4 km*4 km resolution, by fraction and sources (years 2000-2006) 
Onroad gasoline PM0.1 294,860 522,199 0.083 1.107 (1.091, 1.123) < 0.01 
Onroad diesel PM0.1 294,860 522,199 0.069 1.078 (1.066, 1.091) < 0.01 
Commercial meat cooking 
PM0.1 

294,860 522,199 0.122 1.069 (1.058, 1.081) < 0.01 

Wood burning PM0.1 294,860 522,199 0.272 0.982 (0.975, 0.989) < 0.01 
Onroad gasoline PM2.5 294,860 522,199 0.386 1.091 (1.077, 1.106) < 0.01 
Onroad diesel PM2.5 294,860 522,199 0.397 1.059 (1.049, 1.070) < 0.01 
Commercial meat cooking 
PM2.5 

294,860 522,199 1.084 1.041 (1.033, 1.050) < 0.01 

Wood burning PM2.5 294,860 522,199 1.811 0.985 (0.977, 0.993) < 0.01 
aPM2.5; particulate matter less than 2.5 µm in aerodynamic diameter; PM0.1; particulate matter less than 
0.1 µm in aerodynamic diameter; OC: organic carbon; EC: elemental carbon; SOA secondary organic 
aerosols.  
bInter-quartile range in exposure. Unit is microgram per cubic meter. 
cOdds ratios were estimated using conditional logistic regression models, adjusted for race/ethnicity and 
educational level using categorical variables and for maternal age and median household income at 
Census block group level using polynomial functions. Odds ratios are expressed per interquartile range 
increase in exposure.  
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Table 4. Associations between preterm births and indicators of traffic-related pollution at fine geographic scale in California, 
by geocoding accuracy. 

 All subjects  
(regardless of geocoding accuracy	of maternal residences) 

 Subjects with maternal residences geocoded 
 at the tax parcel level 

Air pollution 
indicatora 

Number of 
cases 

Number of 
controls  IQRb 

Adjusted odds 
ratio (95% 
confidence 
interval)c 

p 
value 

 
Number 
of cases 

Number 
of 

controls 
 IQRb 

Adjusted odds 
ratio (95% 
confidence 
interval)c 

p 
value 

CALINE4 modeled concentrations (years 2000-2008) 
UFP 397,047 741,023 6480 0.994 (0.988, 1.000) 0.04  212,010 216,885 6770 1.028 (1.021, 1.036) < 0.01 
CO  397,047 741,023 58.79 1.003 (0.996, 1.009) 0.44  212,010 216,885 64.65 1.044 (1.035, 1.053) < 0.01 
NOx 397,047 741,023 5.97 1.005 (0.999, 1.011) 0.08  212,010 216,885 6.47 1.034 (1.026, 1.042) < 0.01 
Traffic density (within buffers of different sizes, years 2000-2008) 
50m buffer 427,642 829,442  0.968 (0.940, 0.996) 0.03  232,775 250,195  1.063 (1.013, 1.117) 0.01 
150m buffer 427,642 829,442  0.987 (0.972, 1.002) 0.09  232,775 250,195  1.048 (1.026, 1.072) < 0.01 
250m buffer 427,642 829,442  0.964 (0.950, 0.979) < 0.01  232,775 250,195  1.011 (0.990, 1.033) 0.29 
350m buffer 427,642 829,442  0.962 (0.947, 0.978) < 0.01  232,775 250,195  1.012 (0.989, 1.035) 0.31 
Distance to roadways (years 2000-2008) 
Less than 50m 427,762 829,871 

 
0.983 (0.975, 0.991) < 0.01  232,863 250,398  0.996 (0.983, 1.009) 0.54 

Less than 100m 427,762 829,871 
 

0.991 (0.984, 0.998) < 0.01  232,863 250,398  1.009 (0.998, 1.020) 0.11 
Less than 150m 427,762 829,871 

 
0.988 (0.980, 0.996) 0.01  232,863 250,398  1.013 (1.002, 1.023) 0.02 

Less than 200m 427,762 829,871 
 

0.981 (0.973, 0.990) < 0.01  232,863 250,398  1.003 (0.992, 1.014) 0.63 
aUFP: ultrafine particle number; NOx; nitrogen oxides; CO: carbon monoxide.  
bInter-quartile range in exposure. Unit is part per billion for gaseous pollutants. 
cOdds ratios were estimated using conditional logistic regression models, adjusted for race/ethnicity and educational level using categorical 
variables and for maternal age and median household income at Census block group level using polynomial functions. For estimated pollutant 
concentrations, odds ratios are expressed per interquartile range. For traffic density, they are expressed per 10,000 vehicles per day per meter. For 
distance to roadways, they compare births within the stated distance to those outside that distance. 


